
MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 2: Continuity

The definition of continuity given in the notes is that f : U ⊆ Rn →
Rm is continuous at a ∈ U if, and only if, limx→a f(x) = f(a). This has the
ε - δ version

∀ε > 0,∃ δ > 0 : ∀x, |x− a| < δ =⇒ |f(x)− f(a)| < ε.

1. Scalar-valued functions.

i. Let 1 ≤ i ≤ n and define the i-th projection function pi : Rn → R by
only retaining the i-th coordinate, so

pi(x) = pi
((
x1, ..., xn

)T)
= xi.

Verify the ε - δ definition to show that pi is continuous on Rn.

Remember, if x, a ∈ Rn and |x− a| < δ then |xi − ai| < δ for each
1 ≤ i ≤ n.

A different proof of continuity was given in the lectures.

ii. Prove, by verifying the ε - δ definition that

f : Rn → R,x 7→ x1 + x2 + ...+ xn

is continuous on Rn.

iii. Let c ∈ Rn, c 6= 0, be a fixed vector. Prove, by verifying the ε - δ
definition that f : Rn → R, x 7→ c • x is continuous on Rn.

Hint Make use of the Cauchy-Schwarz inequality, |c • d| ≤ |c| |d| for
c,d ∈ Rn.

Part i is a special case of Part iii, with c = ei, while Part ii is the
special case c = (1, 1, ...., 1)T .

Solution i. Let 1≤ i≤n be given. Let a ∈ Rn be given. Let ε > 0 be given.
Choose δ = ε > 0. Assume x satisfies |x− a| < δ. This means in particular
that |xi − ai| < δ. For such x consider∣∣pi(x)− pi(a)

∣∣ =
∣∣xi − ai∣∣ < δ = ε.
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Hence we have verified the definition of limx→a p
i(x) = pi(a) . So pi is con-

tinuous at a. But i and a were arbitrary, so pi is continuous on Rn for all
i.

ii. Let a ∈ Rn be given. Let ε > 0 be given. Choose δ = ε/n > 0. Assume x
satisfies |x− a| < δ. This means that |xi − ai| < δ for all components. For
such x consider

|f(x)− f(a)| =
∣∣(x1 + x2 + ...+ xn

)
−
(
a1 + a2 + ...+ an

)∣∣
=

∣∣(x1 − a1)+
(
x2 − a2

)
+ ...+ (xn − an)

∣∣
≤

∣∣x1 − a1∣∣+
∣∣x2 − a2∣∣+ ...+ |xn − an|

by the triangle inequality

< nδ = n
( ε
n

)
= ε.

Hence we have verified the definition of limx→a f(x) = f(a) . So f is contin-
uous at a. But a was arbitrary, so f is continuous on Rn.

iii. One solution is to follow part ii. Let a ∈ Rn be given. Let ε > 0 be
given. Choose δ = ε/

∑n
i=1 |ci| > 0. Assume x satisfies |x− a| < δ. For such

x consider

|f(x)− f(a)| = |c • x− c • a|

=
∣∣(c1x1 + c2x2 + ...+ cnxn

)
−
(
c1a1 + c2a2 + ...+ cnan

)∣∣
=

∣∣c1(x1 − a1)+ c2
(
x2 − a2

)
+ ...+ cn(xn − an)

∣∣
≤

∣∣c1∣∣ ∣∣x1 − a1∣∣+
∣∣c2∣∣ ∣∣x2 − a2∣∣+ ...+ |cn| |xn − an|

by the triangle inequality

< δ
∑n

i=1

∣∣ci∣∣ =
∑n

i=1

∣∣ci∣∣ ( ε∑n
i=1 |ci|

)
= ε.

Hence we have verified the definition of f continuous at a. Since a was arbi-
trary, f is continuous on Rn.

Alternative solution Let a ∈ Rn be given. Let ε > 0 be given. Choose
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δ = ε/ |c| > 0. Assume x satisfies |x− a| < δ. For such x consider

|f(x)− f(a)| = |c • x− c • a|

= |c • (x− a)| since the scalar product is distributive

≤ |c| |x− a| by Cauchy-Schwarz

< |c| δ

= |c| (ε/ |c|)

= ε.

Hence we have verified the definition of f continuous at a. Since a was arbi-
trary, f is continuous on Rn.

2 Prove, by verifying the ε - δ definition of continuity that the scalar-valued
f : R2 → R, (x, y)T 7→ xy is continuous on R2.

Hint If a = (a, b)T ∈ R2 is given write f(x) − f(a) = xy − ab in terms of
x− a and y − b.
Solution The method is based on the identity

xy − ab = (x− a) (y − b) + a (y − b) + b (x− a) . (1)

Let a = (a, b)T ∈ R2 be given. Let ε > 0 be given. Choose

δ = min

(
1,

ε

1 + |a|+ |b|

)
> 0.

Assume x = (x, y)T satisfies |x− a| < δ, in which case

|x− a| < δ and |y − b| < δ. (2)

For such x consider

|f(x)− f(a)| = |xy − ab| = |(x− a) (y − b) + a (y − b) + b (x− a)|

by (1) above,

≤ |x− a| |y − b|+ |a| |y − b|+ b |x− a|

by the triangle inequality,

< δ2 + |a| δ + |b| δ,
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by (2). We are also assuming that δ ≤ 1 in which case δ2 ≤ δ and thus

|f(x)− f(a)| < δ (1 + |a|+ |b|)

≤ ε

1 + |a|+ |b|
(1 + |a|+ |b|)

since δ < ε/ (1 + |a|+ |b|)
= ε.

Hence we have verified the definition of f continuous at a. Since a was arbi-
trary, f is continuous on R2.

Note You might try to use the identity

xy − ab = (x− a) y + a (y − b) .

This would lead to
|f(x)− f(a)| ≤ δ|y|+ δ|a| .

You could NOT choose δ = ε/(|y|+ |a|), since δ cannot depend on the
varying point x = (x, y)T . It can only depend on the fixed point a = (a, b)T .

Instead you should demand that δ ≤ 1 when |y − b| < δ ≤ 1 opens out
to give |y| < 1 + |b|. Then

|f(x)− f(a)| ≤ δ|y|+ δ|a| ≤ δ(1 + |b|+ |a|) ,

and we choose the same δ as above.

3 Prove, by verifying the ε - δ definition that the vector-valued function
f : R2 → R2, (

x

y

)
7→

(
2x+ y

x− 3y

)
is continuous on R2.

Note For practice I have asked you to verify the definition, not to use any
result that would allow you to look at each component separately.
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Solution i. Let a = (a, b)T ∈ R2 be given. Let ε > 0 be given. Choose
δ = ε/

√
17. Assume x = (x, y)T satisfies |x− a| < δ. Then,

|f(x)− f(a)|2 =

∣∣∣∣∣
(

2x+ y

x− 3y

)
−

(
2a+ b

a− 3b

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

2 (x− a) + (y − b)
(x− a)− 3 (y − b)

)∣∣∣∣∣
2

.

I have written this in terms of x − a and y − b since I know I can make
them small. Continue, using the definition of |...| on Rn,

|f(x)− f(a)|2 =
(
2 (x− a) + (y − b)

)2
+
(

(x− a)− 3 (y − b)
)2

= 4 (x− a)2 + 4 (x− a) (y − b) + (y − b)2

+ (x− a)2 − 6 (x− a) (y − b) + 9 (y − b)2

= 5 (x− a)2 − 2 (x− a) (y − b) + 10 (y − b)2 .

The negative sign on the middle term is a possible problem when applying
upper bounds for |x− a| and |y − b|. We remove this by using the triangle
inequality:

|f(x)− f(a)|2 =
∣∣5 (x− a)2 − 2 (x− a) (y − b) + 10 (y − b)2

∣∣
≤ 5 (x− a)2 + 2 |x− a| |y − b|+ 10 (y − b)2 ,

Yet |x− a| < δ means that both |x− a| < δ and |y − b| < δ. Thus

|f(x)− f(a)|2 ≤ 5δ2 + 2δ2 + 10δ2 = 17δ2.

Taking roots gives

|f(x)− f(a)| ≤
√

17δ =
√

17

(
ε√
17

)
= ε.

Hence f is continuous at a ∈ R2. Yet a was arbitrary so f is continuous on
R2.

Alternative Solution Recall that |y| ≤
∑n

i=1 y
i for y ∈ Rn so |g(x)| ≤∑m

i=1 |gi(x)| for any g : Rn → Rm. With g(x) = f(x)− f(a) we get

|f(x)− f(a)| ≤ |2 (x− a) + (y − b)|+ |(x− a)− 3 (y − b)|

≤ 2 |x− a|+ |y − b|+ |x− a|+ 3 |y − b| ,
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by additional applications of the triangle inequality. Thus

|f(x)− f(a)| ≤ 3 |x− a|+ 4 |y − b| ,

and δ = ε/7 will suffice.

4 Let Mm,n (R) be the set of all m×n matrix of real numbers. Let M ∈
Mm,n (R).

In the notes we showed that the function x 7→Mx is continuous on Rn by
showing that each component function is continuous on Rn. In this question
we show it is continuous by verifying the ε - δ definition.

i. Prove that there exists C > 0, depending on M , such that |Mx| ≤ C |x|
for all x ∈ Rn.

Hint Write the matrix in row form as

M =


r1

r2

...
rm

 when Mx =


r1 • x

r2 • x
...

rm • x

 .

What is |Mx|? Apply Cauchy-Schwarz to each |ri • x| .

ii. Deduce, by verifying the ε - δ definition, that the vector-valued function
f : Rn → Rm,x 7→Mx is continuous on Rn.

Solution i From the hint given and the definition of the norm we have

|Mx|2 =
m∑
i=1

∣∣ri • x
∣∣2 ≤ m∑

i=1

∣∣ri∣∣2 |x|2 ,
by Cauchy-Schwarz. The result then follows with

C =

(
m∑
i=1

∣∣ri∣∣2)1/2

=

(
m∑
i=1

n∑
j=1

(
aij
)2)1/2

,

where aij is the i, j-th element of M .
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ii. Assume M 6= 0 since the result is immediate if M = 0. Let f(x) = Mx.
Let a ∈ Rn be given. Let ε > 0 be given, choose δ = ε/C, with C as found
in part a, and C 6= 0 since M 6= 0. Assume 0 < |x− a| < δ. Then

|f(x)− f(a)| = |Mx−Ma| = |M(x− a)|

since matrix multiplication is distributive

≤ C |x− a| by the definition of C

< Cδ = C (ε/C) = ε.

Hence we have verified the definition that f is continuous at a ∈ Rn. Yet a
was arbitrary so f is continuous on Rn.

5. Determine where each of the following maps f : R2 → R is continuous.
For x = (x, y)T ∈ R2,

i.

f(x) =

{
x+ y if y > 0

x− y − 1 if y ≤ 0

ii.

f(x) =

{
x+ y if y > 0

x− y if y ≤ 0

Hint: Your arguments should split into three cases, y > 0, y < 0 and y = 0.
You should make use of the fact that polynomials in x and y are continuous
in open subsets of R2.

Solution i. This function is continuous on the open set given by y > 0
(the upper half plane) since it is given by the polynomial x + y. It is also
continuous on the open set given by y < 0 (the lower half plane) because it
is given by the polynomial x+ y − 1.

However, where the upper and lower half plane meet, i.e. the x-axis, f
is not continuous. This is because, at a point (x, 0)T on the x-axis we can
look at the directional limit as we approach the point on a vertical straight
line from above, i.e.

f

((
x

0

)
+ te2

)
= f

((
x

t

))
= x+ t→ x as t→ 0 + .
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Whereas, approaching the point from below on a vertical straight line, the
directional limit is

f

((
x

0

)
+ te2

)
= f

((
x

t

))
= x− t− 1→ x− 1 as t→ 0− .

Different directional limits mean there is no limit at (x, 0)T and so no conti-
nuity there.

ii. This function is continuous since it can be written f
(

(x, y)T
)

= x+ |y|.

(Formally, this is continuous because it is the sum of two continuous func-
tions: (x, y)T 7→ x and (x, y)T 7→ y are continuous by a result in the lecture
notes (and also Question 1 on projections) and y 7→ |y| is continuous since
limy→a |y| = |a| for all a ∈ R.)

Note This is rather a ‘clever’ solution of part ii. We could, instead, follow
part i and say that this function is continuous on the open set given by y > 0
(the upper half plane) since it is given by the polynomial x + y. It is also
continuous on the open set given by y < 0 (the lower half plane) because it
is given by the polynomial x− y.

Again this leaves the x - axis, but this time we believe that f is continuous
there. We show this by verifying the definition of limit. Let a be an element
of the x-axis, so a = (a, 0)T . Note that f(a) = a. Let ε > 0 be given. Choose
δ = ε/2. Assume |x− a| < δ. With x = (x, y)T this implies |x− a| < δ and
|y − 0| < δ.

There are two cases, when y > 0 and then y ≤ 0.

In the first case, |x− a| < δ and y > 0 together give

|f(x)− f(a)| = |(x+ y)− a| = |(x− a) + y| ≤ |x− a|+ |y| < 2δ = ε,

having used the triangle inequality. Similarly in the second case, |x− a| < δ
and y ≤ 0 together give

|f(x)− f(a)| = |(x− y)− a| = |(x− a)− y| ≤ |x− a|+ |y| < 2δ = ε.

In both cases |f(x)− f(a)| < ε and so we have verified the definition of
continuity at a. Yet a was arbitrary so f is continuous on the x-axis.

6. Return to the function of Question 10 Sheet 1, f : R2 → R defined by

f(x) =
(x2 − y)

2

x4 + y2
for x = (x, y)T 6= 0 and f (0) = 1.
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i. Show that f is continuous at the origin along any straight line through
the origin.

ii. Show that f is not continuous at the origin.

This is then an illustration of

∀v, lim
t→0

f (a + tv) = f (a) 6=⇒ lim
x→a

f (x) = f (a) .

Solution i. Continuous at the origin along any straight line through the
origin means limt→0 f(tv) = f(0) for all vectors v. Yet in Question 10i,
Sheet 1, you were asked to show that limt→0 f(tv) = 1 and, since f(0) = 1
by the definition of f , we can deduce that f is continuous at the origin along
any straight line through the origin.

ii. To be continuous at the origin we require limx→0 f(x) = f(0). Yet you
were required to show in Question 10ii, Sheet 1, that limx→0 f(x) does not
exist. Hence it cannot be continuous at the origin.

Linear Functions.

7. Linear functions The definition of a linear function L : Rn → Rm is
that

L(u + v) = L(u) + L(v) and L(λu) = λL(u) ,

for all u,v ∈ Rn and all λ ∈ R.

i. Given a ∈ Rn prove that L : Rn → R,x 7→ a • x is a linear function.

This was stated without proof in the lectures.

ii. An example of Part i is, if a = (2,−5)T ∈ R2, then f(x) = a • x =
2x− 5y is a linear function on R2. Show that

a. f(x) = 2x− 5y + 2 is not a linear function on R2,

b. f(x) = 2x− 5y + 3xy is not a linear function on R2.

iii. Given M ∈ Mm,n (R), an m × n matrix with real entries, prove that
L : Rn → Rm,x 7→Mx is a linear function.

This was stated without proof in the lectures.
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iv. Let L : R2 → R3 be given by

L

((
x

y

))
=

 3x+ 2y
x− y + 1

5x

 .

Show that L is not a linear function.

Solution i. For u,v ∈ Rn and λ ∈ R we have

L (u + v) = a • (u + v) = a • u + a • v =L (u) + L (v)

L (λu) = a • (λu) = λa • u = λL (u) .

Hence L is a linear function.

ii. a. For a counter-example note that

f

((
1

1

))
= −1 and f

((
2

2

))
= −4.

Since

f

((
2

2

))
6= 2f

((
1

1

))
we conclude that f is not linear

b. For a counter-example note that

f

((
1

1

))
= 0 and f

((
2

2

))
= 6.

iii. For u,v ∈ Rn and λ ∈ R we have

L (u) + L(v) = Mu +Mv =M (u + v) = L(u + v)

L(λu) = M (λu) = λMu = λL(u) .

Hence L is a linear function.

iv. For a counter-example note that

L

((
1

0

))
=

 3
2
5

 and L

((
2

0

))
=

 6
3
10

 .
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Thus

L

(
2

(
1

0

))
6= 2L

((
1

0

))
.

Hence L is not a linear function.

8. If L : Rn → Rm is a linear function prove that there exists C > 0,
depending on L, such that

|L(x)| ≤ C |x| (3)

for all x ∈ Rn.

Deduce that L satisfies the ε - δ definition of continuous on Rn.

Hint Apply a result from the lectures along with Question 4 above.

Solution In the notes it is shown that to each linear map is associated a
matrix M so that L(x) = Mx for all x ∈ Rn. The result (3), and the
continuity of L, then follows immediately from Question 4 above.

Alternative Solution Given x ∈ Rn we can write x =
∑n

i=1 x
iei. Then L

linear means that

L (x) =
n∑

i=1

xiL (ei) .

By the triangle inequality,

|L (x)| ≤
n∑

i=1

∣∣xi∣∣ |L (ei)| ≤

(
n∑

i=1

∣∣xi∣∣2)1/2( n∑
i=1

|L (ei)|2
)1/2

,

by Cauchy-Schwarz. This means the required result follows with C =
(∑n

i=1 |L (ei)|2
)1/2

.
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Solutions to Additional Questions 2

9. Verify the ε - δ definition of continuity and show that the scalar-valued
f : R2 → R, (x, y)T 7→ x2y is continuous on R2.

Hint Given a = (a, b)T ∈ R2 write x2y − a2b in terms of x− a and y − b.
Solution Let a = (a, b)T ∈ R2 be given. Let

σ = min
(
1, ε/

(
1 + 3 |a|+ 3 |a|2

))
.

Assume x ∈ R2 satisfies |x− a| < δ, so |x− a| < δ and |y − b| < δ. We
start by developing an identity.

x2y − a2b = (x− a)2 (y − b) + x2b+ 2xay − 2xab− a2y

= (x− a)2 (y − b) + (x− a)2 b+ 2xay − a2y − a2b

= (x− a)2 (y − b) + (x− a)2 b+ 2 (x− a) a (y − b) + a2y

+2xab− 3a2b

= (x− a)2 (y − b) + b (x− a)2 + 2a (x− a) (y − b)

+a2 (y − b) + 2ab (x− a)

Thus, by the triangle inequality,∣∣x2y − a2b∣∣ ≤ |x− a|2 |y − b|+ |b| |x− a|2 + 2 |a| |x− a| |y − b|

+ |a|2 |y − b|+ 2 |ab| |x− a|

< δ3 + |b| δ + 2 |a| δ2 + |a|2 δ + 2 |a| |b| δ

< δ
(
1 + 3 |a|+ 3 |a|2

)
,

having used δ ≤ 1 and |a|, |b| ≤ |a|. Then by our choice of δ∣∣x2y − a2b∣∣ < ε

1 + 3 |a|+ 3 |a|2
(
1 + 3 |a|+ 3 |a|2

)
= ε.

And so we have verified the definition of limx→a f(x) = f(a) . Hence f is
continuous at a. Yet a was arbitrary, so f is continuous on R2.

There is no great virtue in this question other than showing how time con-
suming it is to verify the definition, even with quite simple functions.

10. Let 1 ≤ i ≤ n and define ρi : Rn → Rn−1 by omitting the i-th coordinate,
so

ρi
((
x1, ..., xn

)T)
=
(
x1, ..., xi−1, xi+1, ..., xn

)T
.
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i. Verify the ε - δ definition of continuity and show that ρi is continuous on
Rn.

ii. For each 1≤ i≤ n find Mi ∈ Mn−1,n (R) such that ρi(x) = Mix for all
x ∈ Rn. (Thus continuity follows from Question 4. We could, though, note
that ρi is linear in which case continuity follows from Question 8.)

Solution i. Let 1≤ i≤ n, a ∈ Rn and ε > 0 be given. Choose δ = ε and

assume x satisfies |x− a| < δ. Then for such x∣∣ρi(x)− ρi(a)
∣∣2 =

∣∣∣(x1 − a1, ..., xi−1 − ai−1, xi+1 − ai+1, ..., xn − an
)T ∣∣∣2

=
n∑

j=1,j 6=i

∣∣xj − aj∣∣2 ≤ n∑
j=1

∣∣xj − aj∣∣2
= |x− a|2 .

Thus ∣∣ρi(x)− ρi(a)
∣∣ ≤ |x− a| < δ = ε,

and we have verified the definition of limx→a ρ
i(x) = ρi(a) . Hence ρi is con-

tinuous at a. Yet i and a were arbitrary, so ρi is continuous on R2 for all
i.

ii.

Mi =



1
. . .

1 0 0 0 · · ·
· · · 0 0 0 1

. . .

1


,

with 1’s on the two half diagonals, 0’s elsewhere, and 0’s in the i-th column.
The continuity of ρi would then also follows from Question 4.
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