MATH20132 Calculus of Several Variables.

Solutions to Problems 2: Continuity

The definition of continuity given in the notes is that $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is continuous at $\mathbf{a} \in U$ if, and only if, $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})$. This has the $\varepsilon-\delta$ version

$$
\forall \varepsilon>0, \exists \delta>0: \forall \mathbf{x},|\mathbf{x}-\mathbf{a}|<\delta \Longrightarrow|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|<\varepsilon
$$

1. Scalar-valued functions.
i. Let $1 \leq i \leq n$ and define the i-th projection function $p^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by only retaining the i-th coordinate, so

$$
p^{i}(\mathbf{x})=p^{i}\left(\left(x^{1}, \ldots, x^{n}\right)^{T}\right)=x^{i}
$$

Verify the $\varepsilon-\delta$ definition to show that p^{i} is continuous on \mathbb{R}^{n}.
Remember, if $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$ and $|\mathbf{x}-\mathbf{a}|<\delta$ then $\left|x^{i}-a^{i}\right|<\delta$ for each $1 \leq i \leq n$.

A different proof of continuity was given in the lectures.
ii. Prove, by verifying the $\varepsilon-\delta$ definition that

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x^{1}+x^{2}+\ldots+x^{n}
$$

is continuous on \mathbb{R}^{n}.
iii. Let $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{c} \neq \mathbf{0}$, be a fixed vector. Prove, by verifying the $\varepsilon-\delta$ definition that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ is continuous on \mathbb{R}^{n}.

Hint Make use of the Cauchy-Schwarz inequality, $|\mathbf{c} \bullet \mathbf{d}| \leq|\mathbf{c}||\mathbf{d}|$ for $\mathbf{c}, \mathbf{d} \in \mathbb{R}^{n}$.

Part i is a special case of Part iii, with $\mathbf{c}=\mathbf{e}_{i}$, while Part ii is the special case $\mathbf{c}=(1,1, \ldots ., 1)^{T}$.

Solution i. Let $1 \leq i \leq n$ be given. Let $\mathbf{a} \in \mathbb{R}^{n}$ be given. Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon>0$. Assume \mathbf{x} satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. This means in particular that $\left|x^{i}-a^{i}\right|<\delta$. For such \mathbf{x} consider

$$
\left|p^{i}(\mathbf{x})-p^{i}(\mathbf{a})\right|=\left|x^{i}-a^{i}\right|<\delta=\varepsilon .
$$

Hence we have verified the definition of $\lim _{\mathbf{x} \rightarrow \mathbf{a}} p^{i}(\mathbf{x})=p^{i}(\mathbf{a})$. So p^{i} is continuous at a. But i and a were arbitrary, so p^{i} is continuous on \mathbb{R}^{n} for all i.
ii. Let $\mathbf{a} \in \mathbb{R}^{n}$ be given. Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon / n>0$. Assume \mathbf{x} satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. This means that $\left|x^{i}-a^{i}\right|<\delta$ for all components. For such \mathbf{x} consider

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})| & =\left|\left(x^{1}+x^{2}+\ldots+x^{n}\right)-\left(a^{1}+a^{2}+\ldots+a^{n}\right)\right| \\
& =\left|\left(x^{1}-a^{1}\right)+\left(x^{2}-a^{2}\right)+\ldots+\left(x^{n}-a^{n}\right)\right| \\
& \leq\left|x^{1}-a^{1}\right|+\left|x^{2}-a^{2}\right|+\ldots+\left|x^{n}-a^{n}\right|
\end{aligned}
$$

by the triangle inequality

$$
<n \delta=n\left(\frac{\varepsilon}{n}\right)=\varepsilon
$$

Hence we have verified the definition of $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})$. So f is continuous at a. But a was arbitrary, so f is continuous on \mathbb{R}^{n}.
iii. One solution is to follow part ii. Let $\mathbf{a} \in \mathbb{R}^{n}$ be given. Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon / \sum_{i=1}^{n}\left|c^{i}\right|>0$. Assume \mathbf{x} satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. For such x consider

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})| & =|\mathbf{c} \bullet \mathbf{x}-\mathbf{c} \bullet \mathbf{a}| \\
& =\left|\left(c^{1} x^{1}+c^{2} x^{2}+\ldots+c^{n} x^{n}\right)-\left(c^{1} a^{1}+c^{2} a^{2}+\ldots+c^{n} a^{n}\right)\right| \\
& =\left|c^{1}\left(x^{1}-a^{1}\right)+c^{2}\left(x^{2}-a^{2}\right)+\ldots+c^{n}\left(x^{n}-a^{n}\right)\right| \\
& \leq\left|c^{1}\right|\left|x^{1}-a^{1}\right|+\left|c^{2}\right|\left|x^{2}-a^{2}\right|+\ldots+\left|c^{n}\right|\left|x^{n}-a^{n}\right|
\end{aligned}
$$

by the triangle inequality

$$
<\delta \sum_{i=1}^{n}\left|c^{i}\right|=\sum_{i=1}^{n}\left|c^{i}\right|\left(\frac{\varepsilon}{\sum_{i=1}^{n}\left|c^{i}\right|}\right)=\varepsilon .
$$

Hence we have verified the definition of f continuous at a. Since a was arbitrary, f is continuous on \mathbb{R}^{n}.

Alternative solution Let $\mathbf{a} \in \mathbb{R}^{n}$ be given. Let $\varepsilon>0$ be given. Choose
$\delta=\varepsilon /|\mathbf{c}|>0$. Assume \mathbf{x} satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. For such \mathbf{x} consider

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})| & =|\mathbf{c} \bullet \mathbf{x}-\mathbf{c} \bullet \mathbf{a}| \\
& =|\mathbf{c} \bullet(\mathbf{x}-\mathbf{a})| \quad \text { since the scalar product is distributive } \\
& \leq|\mathbf{c}||\mathbf{x}-\mathbf{a}| \quad \text { by Cauchy-Schwarz } \\
& <|\mathbf{c}| \delta \\
& =|\mathbf{c}|(\varepsilon /|\mathbf{c}|) \\
& =\varepsilon
\end{aligned}
$$

Hence we have verified the definition of f continuous at a. Since a was arbitrary, f is continuous on \mathbb{R}^{n}.

2 Prove, by verifying the $\varepsilon-\delta$ definition of continuity that the scalar-valued $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y)^{T} \mapsto x y$ is continuous on \mathbb{R}^{2}.
Hint If $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ is given write $f(\mathbf{x})-f(\mathbf{a})=x y-a b$ in terms of $x-a$ and $y-b$.

Solution The method is based on the identity

$$
\begin{equation*}
x y-a b=(x-a)(y-b)+a(y-b)+b(x-a) . \tag{1}
\end{equation*}
$$

Let $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ be given. Let $\varepsilon>0$ be given. Choose

$$
\delta=\min \left(1, \frac{\varepsilon}{1+|a|+|b|}\right)>0 .
$$

Assume $\mathbf{x}=(x, y)^{T}$ satisfies $|\mathbf{x}-\mathbf{a}|<\delta$, in which case

$$
\begin{equation*}
|x-a|<\delta \text { and }|y-b|<\delta \tag{2}
\end{equation*}
$$

For such \mathbf{x} consider

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})|= & |x y-a b|=|(x-a)(y-b)+a(y-b)+b(x-a)| \\
& \quad \text { by (1) above, } \\
\leq & |x-a||y-b|+|a||y-b|+b|x-a| \\
& \quad \text { by the triangle inequality, } \\
< & \delta^{2}+|a| \delta+|b| \delta,
\end{aligned}
$$

by (2). We are also assuming that $\delta \leq 1$ in which case $\delta^{2} \leq \delta$ and thus

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})| & <\delta(1+|a|+|b|) \\
& \leq \frac{\varepsilon}{1+|a|+|b|}(1+|a|+|b|) \\
& \quad \operatorname{since} \delta<\varepsilon /(1+|a|+|b|) \\
& =\varepsilon .
\end{aligned}
$$

Hence we have verified the definition of f continuous at a. Since a was arbitrary, f is continuous on \mathbb{R}^{2}.

Note You might try to use the identity

$$
x y-a b=(x-a) y+a(y-b) .
$$

This would lead to

$$
|f(\mathbf{x})-f(\mathbf{a})| \leq \delta|y|+\delta|a|
$$

You could NOT choose $\delta=\varepsilon /(|y|+|a|)$, since δ cannot depend on the varying point $\mathbf{x}=(x, y)^{T}$. It can only depend on the fixed point $\mathbf{a}=(a, b)^{T}$.

Instead you should demand that $\delta \leq 1$ when $|y-b|<\delta \leq 1$ opens out to give $|y|<1+|b|$. Then

$$
|f(\mathbf{x})-f(\mathbf{a})| \leq \delta|y|+\delta|a| \leq \delta(1+|b|+|a|)
$$

and we choose the same δ as above.

3 Prove, by verifying the $\varepsilon-\delta$ definition that the vector-valued function $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
\binom{x}{y} \mapsto\binom{2 x+y}{x-3 y}
$$

is continuous on \mathbb{R}^{2}.
Note For practice I have asked you to verify the definition, not to use any result that would allow you to look at each component separately.

Solution i. Let $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ be given. Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon / \sqrt{17}$. Assume $\mathbf{x}=(x, y)^{T}$ satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. Then,

$$
\begin{aligned}
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|^{2} & =\left|\binom{2 x+y}{x-3 y}-\binom{2 a+b}{a-3 b}\right|^{2} \\
& =\left|\binom{2(x-a)+(y-b)}{(x-a)-3(y-b)}\right|^{2}
\end{aligned}
$$

I have written this in terms of $x-a$ and $y-b$ since I know I can make them small. Continue, using the definition of $|\ldots|$ on \mathbb{R}^{n},

$$
\begin{aligned}
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|^{2}= & (2(x-a)+(y-b))^{2}+((x-a)-3(y-b))^{2} \\
= & 4(x-a)^{2}+4(x-a)(y-b)+(y-b)^{2} \\
& \quad+(x-a)^{2}-6(x-a)(y-b)+9(y-b)^{2} \\
= & 5(x-a)^{2}-2(x-a)(y-b)+10(y-b)^{2} .
\end{aligned}
$$

The negative sign on the middle term is a possible problem when applying upper bounds for $|x-a|$ and $|y-b|$. We remove this by using the triangle inequality:

$$
\begin{aligned}
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|^{2} & =\left|5(x-a)^{2}-2(x-a)(y-b)+10(y-b)^{2}\right| \\
& \leq 5(x-a)^{2}+2|x-a||y-b|+10(y-b)^{2}
\end{aligned}
$$

Yet $|\mathbf{x}-\mathbf{a}|<\delta$ means that both $|x-a|<\delta$ and $|y-b|<\delta$. Thus

$$
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|^{2} \leq 5 \delta^{2}+2 \delta^{2}+10 \delta^{2}=17 \delta^{2}
$$

Taking roots gives

$$
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})| \leq \sqrt{17} \delta=\sqrt{17}\left(\frac{\varepsilon}{\sqrt{17}}\right)=\varepsilon
$$

Hence \mathbf{f} is continuous at $\mathbf{a} \in \mathbb{R}^{2}$. Yet a was arbitrary so \mathbf{f} is continuous on \mathbb{R}^{2}.
Alternative Solution Recall that $|\mathbf{y}| \leq \sum_{i=1}^{n} y^{i}$ for $\mathbf{y} \in \mathbb{R}^{n}$ so $|\mathbf{g}(\mathbf{x})| \leq$ $\sum_{i=1}^{m}\left|g^{i}(\mathbf{x})\right|$ for any $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. With $\mathbf{g}(\mathbf{x})=\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})$ we get

$$
\begin{aligned}
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})| & \leq|2(x-a)+(y-b)|+|(x-a)-3(y-b)| \\
& \leq 2|x-a|+|y-b|+|x-a|+3|y-b|,
\end{aligned}
$$

by additional applications of the triangle inequality. Thus

$$
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})| \leq 3|x-a|+4|y-b|,
$$

and $\delta=\varepsilon / 7$ will suffice.

4 Let $M_{m, n}(\mathbb{R})$ be the set of all $m \times n$ matrix of real numbers. Let $M \in$ $M_{m, n}(\mathbb{R})$.

In the notes we showed that the function $\mathbf{x} \mapsto M \mathrm{x}$ is continuous on \mathbb{R}^{n} by showing that each component function is continuous on \mathbb{R}^{n}. In this question we show it is continuous by verifying the $\varepsilon-\delta$ definition.
i. Prove that there exists $C>0$, depending on M, such that $|M \mathbf{x}| \leq C|\mathbf{x}|$ for all $\mathrm{x} \in \mathbb{R}^{n}$.
Hint Write the matrix in row form as

$$
M=\left(\begin{array}{c}
\mathbf{r}^{1} \\
\mathbf{r}^{2} \\
\vdots \\
\mathbf{r}^{m}
\end{array}\right) \quad \text { when } \quad M \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}^{1} \bullet \mathbf{x} \\
\mathbf{r}^{2} \bullet \mathbf{x} \\
\vdots \\
\mathbf{r}^{m} \bullet \mathbf{x}
\end{array}\right)
$$

What is $|M \mathbf{x}|$? Apply Cauchy-Schwarz to each $\left|\mathbf{r}^{i} \bullet \mathbf{x}\right|$.
ii. Deduce, by verifying the $\varepsilon-\delta$ definition, that the vector-valued function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$ is continuous on \mathbb{R}^{n}.

Solution i From the hint given and the definition of the norm we have

$$
|M \mathbf{x}|^{2}=\sum_{i=1}^{m}\left|\mathbf{r}^{i} \bullet \mathbf{x}\right|^{2} \leq \sum_{i=1}^{m}\left|\mathbf{r}^{i}\right|^{2}|\mathbf{x}|^{2},
$$

by Cauchy-Schwarz. The result then follows with

$$
C=\left(\sum_{i=1}^{m}\left|\mathbf{r}^{i}\right|^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{j}^{i}\right)^{2}\right)^{1 / 2}
$$

where a_{j}^{i} is the i, j-th element of M.
ii. Assume $M \neq 0$ since the result is immediate if $M=0$. Let $\mathbf{f}(\mathbf{x})=M \mathbf{x}$. Let $\mathbf{a} \in \mathbb{R}^{n}$ be given. Let $\varepsilon>0$ be given, choose $\delta=\varepsilon / C$, with C as found in part a, and $C \neq 0$ since $M \neq 0$. Assume $0<|\mathbf{x}-\mathbf{a}|<\delta$. Then

$$
\begin{aligned}
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|= & |M \mathbf{x}-M \mathbf{a}|=|M(\mathbf{x}-\mathbf{a})| \\
& \text { since matrix multiplication is distributive } \\
\leq & C|\mathbf{x}-\mathbf{a}| \quad \text { by the definition of } C \\
< & C \delta=C(\varepsilon / C)=\varepsilon
\end{aligned}
$$

Hence we have verified the definition that \mathbf{f} is continuous at $\mathbf{a} \in \mathbb{R}^{n}$. Yet a was arbitrary so \mathbf{f} is continuous on \mathbb{R}^{n}.
5. Determine where each of the following maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous. For $\mathbf{x}=(x, y)^{T} \in \mathbb{R}^{2}$,
i.

$$
f(\mathbf{x})= \begin{cases}x+y & \text { if } y>0 \\ x-y-1 & \text { if } y \leq 0\end{cases}
$$

ii.

$$
f(\mathbf{x})= \begin{cases}x+y & \text { if } y>0 \\ x-y & \text { if } y \leq 0\end{cases}
$$

Hint: Your arguments should split into three cases, $y>0, y<0$ and $y=0$. You should make use of the fact that polynomials in x and y are continuous in open subsets of \mathbb{R}^{2}.

Solution i. This function is continuous on the open set given by $y>0$ (the upper half plane) since it is given by the polynomial $x+y$. It is also continuous on the open set given by $y<0$ (the lower half plane) because it is given by the polynomial $x+y-1$.

However, where the upper and lower half plane meet, i.e. the x-axis, f is not continuous. This is because, at a point $(x, 0)^{T}$ on the x-axis we can look at the directional limit as we approach the point on a vertical straight line from above, i.e.

$$
f\left(\binom{x}{0}+t \mathbf{e}_{2}\right)=f\left(\binom{x}{t}\right)=x+t \rightarrow x \quad \text { as } \quad t \rightarrow 0+
$$

Whereas, approaching the point from below on a vertical straight line, the directional limit is

$$
f\left(\binom{x}{0}+t \mathbf{e}_{2}\right)=f\left(\binom{x}{t}\right)=x-t-1 \rightarrow x-1 \quad \text { as } \quad t \rightarrow 0-.
$$

Different directional limits mean there is no limit at $(x, 0)^{T}$ and so no continuity there.
ii. This function is continuous since it can be written $f\left((x, y)^{T}\right)=x+|y|$.
(Formally, this is continuous because it is the sum of two continuous functions: $(x, y)^{T} \mapsto x$ and $(x, y)^{T} \mapsto y$ are continuous by a result in the lecture notes (and also Question 1 on projections) and $y \mapsto|y|$ is continuous since $\lim _{y \rightarrow a}|y|=|a|$ for all $a \in \mathbb{R}$.)

Note This is rather a 'clever' solution of part ii. We could, instead, follow part i and say that this function is continuous on the open set given by $y>0$ (the upper half plane) since it is given by the polynomial $x+y$. It is also continuous on the open set given by $y<0$ (the lower half plane) because it is given by the polynomial $x-y$.

Again this leaves the x-axis, but this time we believe that f is continuous there. We show this by verifying the definition of limit. Let a be an element of the x-axis, so $\mathbf{a}=(a, 0)^{T}$. Note that $f(\mathbf{a})=a$. Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon / 2$. Assume $|\mathbf{x}-\mathbf{a}|<\delta$. With $\mathbf{x}=(x, y)^{T}$ this implies $|x-a|<\delta$ and $|y-0|<\delta$.

There are two cases, when $y>0$ and then $y \leq 0$.
In the first case, $|\mathbf{x}-\mathbf{a}|<\delta$ and $y>0$ together give

$$
|f(\mathbf{x})-f(\mathbf{a})|=|(x+y)-a|=|(x-a)+y| \leq|x-a|+|y|<2 \delta=\varepsilon
$$

having used the triangle inequality. Similarly in the second case, $|\mathbf{x}-\mathbf{a}|<\delta$ and $y \leq 0$ together give

$$
|f(\mathbf{x})-f(\mathbf{a})|=|(x-y)-a|=|(x-a)-y| \leq|x-a|+|y|<2 \delta=\varepsilon
$$

In both cases $|f(\mathbf{x})-f(\mathbf{a})|<\varepsilon$ and so we have verified the definition of continuity at \mathbf{a}. Yet a was arbitrary so f is continuous on the x-axis.
6. Return to the function of Question 10 Sheet $1, f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x})=\frac{\left(x^{2}-y\right)^{2}}{x^{4}+y^{2}} \text { for } \mathbf{x}=(x, y)^{T} \neq \mathbf{0} \quad \text { and } \quad f(\mathbf{0})=1
$$

i. Show that f is continuous at the origin along any straight line through the origin.
ii. Show that f is not continuous at the origin.

This is then an illustration of

$$
\forall \mathbf{v}, \lim _{t \rightarrow 0} f(\mathbf{a}+t \mathbf{v})=f(\mathbf{a}) \nRightarrow \lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a}) .
$$

Solution i. Continuous at the origin along any straight line through the origin means $\lim _{t \rightarrow 0} f(t \mathbf{v})=f(\mathbf{0})$ for all vectors \mathbf{v}. Yet in Question 10i, Sheet 1, you were asked to show that $\lim _{t \rightarrow 0} f(t \mathbf{v})=1$ and, since $f(\mathbf{0})=1$ by the definition of f, we can deduce that f is continuous at the origin along any straight line through the origin.
ii. To be continuous at the origin we require $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})=f(\mathbf{0})$. Yet you were required to show in Question 10ii, Sheet 1, that $\lim _{\mathbf{x} \rightarrow 0} f(\mathbf{x})$ does not exist. Hence it cannot be continuous at the origin.

Linear Functions.

7. Linear functions The definition of a linear function $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is that

$$
\mathbf{L}(\mathbf{u}+\mathbf{v})=\mathbf{L}(\mathbf{u})+\mathbf{L}(\mathbf{v}) \quad \text { and } \quad \mathbf{L}(\lambda \mathbf{u})=\lambda \mathbf{L}(\mathbf{u}),
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all $\lambda \in \mathbb{R}$.
i. Given $\mathbf{a} \in \mathbb{R}^{n}$ prove that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{a} \bullet \mathbf{x}$ is a linear function.

This was stated without proof in the lectures.
ii. An example of Part i is, if $\mathbf{a}=(2,-5)^{T} \in \mathbb{R}^{2}$, then $f(\mathbf{x})=\mathbf{a} \bullet \mathbf{x}=$ $2 x-5 y$ is a linear function on \mathbb{R}^{2}. Show that
a. $f(\mathbf{x})=2 x-5 y+2$ is not a linear function on \mathbb{R}^{2},
b. $f(\mathbf{x})=2 x-5 y+3 x y$ is not a linear function on \mathbb{R}^{2}.
iii. Given $M \in M_{m, n}(\mathbb{R})$, an $m \times n$ matrix with real entries, prove that $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$ is a linear function.

This was stated without proof in the lectures.
iv. Let $\mathbf{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\mathbf{L}\left(\binom{x}{y}\right)=\left(\begin{array}{c}
3 x+2 y \\
x-y+1 \\
5 x
\end{array}\right)
$$

Show that \mathbf{L} is not a linear function.

Solution i. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have

$$
\begin{aligned}
L(\mathbf{u}+\mathbf{v}) & =\mathbf{a} \bullet(\mathbf{u}+\mathbf{v})=\mathbf{a} \bullet \mathbf{u}+\mathbf{a} \bullet \mathbf{v}=L(\mathbf{u})+L(\mathbf{v}) \\
L(\lambda \mathbf{u}) & =\mathbf{a} \bullet(\lambda \mathbf{u})=\lambda \mathbf{a} \bullet \mathbf{u}=\boldsymbol{\lambda} L(\mathbf{u}) .
\end{aligned}
$$

Hence L is a linear function.
ii. a. For a counter-example note that

$$
f\left(\binom{1}{1}\right)=-1 \quad \text { and } \quad f\left(\binom{2}{2}\right)=-4
$$

Since

$$
f\left(\binom{2}{2}\right) \neq 2 f\left(\binom{1}{1}\right)
$$

we conclude that f is not linear
b. For a counter-example note that

$$
f\left(\binom{1}{1}\right)=0 \quad \text { and } \quad f\left(\binom{2}{2}\right)=6 .
$$

iii. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have

$$
\begin{aligned}
\mathbf{L}(\mathbf{u})+\mathbf{L}(\mathbf{v}) & =M \mathbf{u}+M \mathbf{v}=M(\mathbf{u}+\mathbf{v})=\mathbf{L}(\mathbf{u}+\mathbf{v}) \\
\mathbf{L}(\lambda \mathbf{u}) & =M(\lambda \mathbf{u})=\lambda M \mathbf{u}=\lambda \mathbf{L}(\mathbf{u}) .
\end{aligned}
$$

Hence \mathbf{L} is a linear function.
iv. For a counter-example note that

$$
\mathbf{L}\left(\binom{1}{0}\right)=\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right) \quad \text { and } \quad \mathbf{L}\left(\binom{2}{0}\right)=\left(\begin{array}{c}
6 \\
3 \\
10
\end{array}\right)
$$

Thus

$$
\mathbf{L}\left(2\binom{1}{0}\right) \neq 2 \mathbf{L}\left(\binom{1}{0}\right) .
$$

Hence \mathbf{L} is not a linear function.
8. If $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear function prove that there exists $C>0$, depending on \mathbf{L}, such that

$$
\begin{equation*}
|\mathbf{L}(\mathbf{x})| \leq C|\mathbf{x}| \tag{3}
\end{equation*}
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
Deduce that \mathbf{L} satisfies the $\varepsilon-\delta$ definition of continuous on \mathbb{R}^{n}.
Hint Apply a result from the lectures along with Question 4 above.
Solution In the notes it is shown that to each linear map is associated a matrix M so that $\mathbf{L}(\mathbf{x})=M \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. The result (3), and the continuity of \mathbf{L}, then follows immediately from Question 4 above.
Alternative Solution Given $\mathbf{x} \in \mathbb{R}^{n}$ we can write $\mathbf{x}=\sum_{i=1}^{n} x^{i} \mathbf{e}_{i}$. Then \mathbf{L} linear means that

$$
\mathbf{L}(\mathbf{x})=\sum_{i=1}^{n} x^{i} \mathbf{L}\left(\mathbf{e}_{i}\right)
$$

By the triangle inequality,

$$
|\mathbf{L}(\mathbf{x})| \leq \sum_{i=1}^{n}\left|x^{i}\right|\left|\mathbf{L}\left(\mathbf{e}_{i}\right)\right| \leq\left(\sum_{i=1}^{n}\left|x^{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|\mathbf{L}\left(\mathbf{e}_{i}\right)\right|^{2}\right)^{1 / 2}
$$

by Cauchy-Schwarz. This means the required result follows with $C=\left(\sum_{i=1}^{n}\left|\mathbf{L}\left(\mathbf{e}_{i}\right)\right|^{2}\right)^{1 / 2}$.

Solutions to Additional Questions 2

9. Verify the $\varepsilon-\delta$ definition of continuity and show that the scalar-valued $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y)^{T} \mapsto x^{2} y$ is continuous on \mathbb{R}^{2}.
Hint Given $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ write $x^{2} y-a^{2} b$ in terms of $x-a$ and $y-b$.
Solution Let $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ be given. Let

$$
\sigma=\min \left(1, \varepsilon /\left(1+3|\mathbf{a}|+3|\mathbf{a}|^{2}\right)\right) .
$$

Assume $\mathbf{x} \in \mathbb{R}^{2}$ satisfies $|\mathbf{x}-\mathbf{a}|<\delta$, so $|x-a|<\delta$ and $|y-b|<\delta$. We start by developing an identity.

$$
\begin{aligned}
x^{2} y-a^{2} b= & (x-a)^{2}(y-b)+x^{2} b+2 x a y-2 x a b-a^{2} y \\
= & (x-a)^{2}(y-b)+(x-a)^{2} b+2 x a y-a^{2} y-a^{2} b \\
= & (x-a)^{2}(y-b)+(x-a)^{2} b+2(x-a) a(y-b)+a^{2} y \\
& \quad+2 x a b-3 a^{2} b \\
= & (x-a)^{2}(y-b)+b(x-a)^{2}+2 a(x-a)(y-b) \\
& \quad+a^{2}(y-b)+2 a b(x-a)
\end{aligned}
$$

Thus, by the triangle inequality,

$$
\begin{aligned}
\left|x^{2} y-a^{2} b\right| \leq & |x-a|^{2}|y-b|+|b||x-a|^{2}+2|a||x-a||y-b| \\
& \quad+|a|^{2}|y-b|+2|a b||x-a| \\
< & \delta^{3}+|b| \delta+2|a| \delta^{2}+|a|^{2} \delta+2|a||b| \delta \\
< & \delta\left(1+3|\mathbf{a}|+3|\mathbf{a}|^{2}\right),
\end{aligned}
$$

having used $\delta \leq 1$ and $|a|,|b| \leq|\mathbf{a}|$. Then by our choice of δ

$$
\left|x^{2} y-a^{2} b\right|<\frac{\varepsilon}{1+3|\mathbf{a}|+3|\mathbf{a}|^{2}}\left(1+3|\mathbf{a}|+3|\mathbf{a}|^{2}\right)=\varepsilon .
$$

And so we have verified the definition of $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a})$. Hence f is continuous at \mathbf{a}. Yet a was arbitrary, so f is continuous on \mathbb{R}^{2}.

There is no great virtue in this question other than showing how time consuming it is to verify the definition, even with quite simple functions.
10. Let $1 \leq i \leq n$ and define $\rho^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ by omitting the i-th coordinate, so

$$
\rho^{i}\left(\left(x^{1}, \ldots, x^{n}\right)^{T}\right)=\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{n}\right)^{T}
$$

i. Verify the $\varepsilon-\delta$ definition of continuity and show that ρ^{i} is continuous on \mathbb{R}^{n}.
ii. For each $1 \leq i \leq n$ find $M_{i} \in M_{n-1, n}(\mathbb{R})$ such that $\rho^{i}(\mathbf{x})=M_{i} \mathbf{x}$ for all $\mathrm{x} \in \mathbb{R}^{n}$. (Thus continuity follows from Question 4 . We could, though, note that ρ^{i} is linear in which case continuity follows from Question 8.)
Solution i. Let $1 \leq i \leq n, \mathbf{a} \in \mathbb{R}^{n}$ and $\varepsilon>0$ be given. Choose $\delta=\varepsilon$ and assume \mathbf{x} satisfies $|\mathbf{x}-\mathbf{a}|<\delta$. Then for such \mathbf{x}

$$
\begin{aligned}
\left|\rho^{i}(\mathbf{x})-\rho^{i}(\mathbf{a})\right|^{2} & =\left|\left(x^{1}-a^{1}, \ldots, x^{i-1}-a^{i-1}, x^{i+1}-a^{i+1}, \ldots, x^{n}-a^{n}\right)^{T}\right|^{2} \\
& =\sum_{j=1, j \neq i}^{n}\left|x^{j}-a^{j}\right|^{2} \leq \sum_{j=1}^{n}\left|x^{j}-a^{j}\right|^{2} \\
& =|\mathbf{x}-\mathbf{a}|^{2}
\end{aligned}
$$

Thus

$$
\left|\rho^{i}(\mathbf{x})-\rho^{i}(\mathbf{a})\right| \leq|\mathbf{x}-\mathbf{a}|<\delta=\varepsilon
$$

and we have verified the definition of $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \rho^{i}(\mathbf{x})=\rho^{i}(\mathbf{a})$. Hence ρ^{i} is continuous at \mathbf{a}. Yet i and a were arbitrary, so ρ^{i} is continuous on \mathbb{R}^{2} for all i.
ii.

$$
M_{i}=\left(\begin{array}{cccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

with 1's on the two half diagonals, 0 's elsewhere, and 0 's in the i-th column. The continuity of ρ^{i} would then also follows from Question 4.

