Solutions to Problems 2: Continuity

The definition of continuity given in the notes is that $\mathbf{f}: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{a} \in U$ if, and only if, $\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{a})$. This has the ε - δ version

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall \mathbf{x}, |\mathbf{x} - \mathbf{a}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| < \varepsilon.$$

- 1. Scalar-valued functions.
 - i. Let $1 \leq i \leq n$ and define the *i-th projection function* $p^i : \mathbb{R}^n \to \mathbb{R}$ by only retaining the *i*-th coordinate, so

$$p^{i}(\mathbf{x}) = p^{i}((x^{1}, ..., x^{n})^{T}) = x^{i}.$$

Verify the ε - δ definition to show that p^i is continuous on \mathbb{R}^n .

Remember, if $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $|\mathbf{x} - \mathbf{a}| < \delta$ then $|x^i - a^i| < \delta$ for each $1 \le i \le n$.

A different proof of continuity was given in the lectures.

ii. Prove, by verifying the ε - δ definition that

$$f: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto x^1 + x^2 + \dots + x^n$$

is continuous on \mathbb{R}^n .

iii. Let $\mathbf{c} \in \mathbb{R}^n, \mathbf{c} \neq \mathbf{0}$, be a fixed vector. Prove, by verifying the ε - δ definition that $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ is continuous on \mathbb{R}^n .

Hint Make use of the Cauchy-Schwarz inequality, $|\mathbf{c} \bullet \mathbf{d}| \leq |\mathbf{c}| |\mathbf{d}|$ for $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$.

Part i is a special case of Part iii, with $\mathbf{c} = \mathbf{e}_i$, while Part ii is the special case $\mathbf{c} = (1, 1, ..., 1)^T$.

Solution i. Let $1 \le i \le n$ be given. Let $\mathbf{a} \in \mathbb{R}^n$ be given. Let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon > 0$. Assume \mathbf{x} satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. This means in particular that $|x^i - a^i| < \delta$. For such \mathbf{x} consider

$$|p^i(\mathbf{x}) - p^i(\mathbf{a})| = |x^i - a^i| < \delta = \varepsilon.$$

Hence we have verified the definition of $\lim_{\mathbf{x}\to\mathbf{a}} p^i(\mathbf{x}) = p^i(\mathbf{a})$. So p^i is continuous at \mathbf{a} . But i and \mathbf{a} were arbitrary, so p^i is continuous on \mathbb{R}^n for all i.

ii. Let $\mathbf{a} \in \mathbb{R}^n$ be given. Let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon/n > 0$. Assume \mathbf{x} satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. This means that $|x^i - a^i| < \delta$ for all components. For such \mathbf{x} consider

$$|f(\mathbf{x}) - f(\mathbf{a})| = |(x^1 + x^2 + \dots + x^n) - (a^1 + a^2 + \dots + a^n)|$$

$$= |(x^1 - a^1) + (x^2 - a^2) + \dots + (x^n - a^n)|$$

$$\leq |x^1 - a^1| + |x^2 - a^2| + \dots + |x^n - a^n|$$
by the triangle inequality
$$< n\delta = n\left(\frac{\varepsilon}{n}\right) = \varepsilon.$$

Hence we have verified the definition of $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$. So f is continuous at \mathbf{a} . But \mathbf{a} was arbitrary, so f is continuous on \mathbb{R}^n .

iii. One solution is to follow part ii. Let $\mathbf{a} \in \mathbb{R}^n$ be given. Let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon / \sum_{i=1}^n |c^i| > 0$. Assume \mathbf{x} satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. For such \mathbf{x} consider

$$|f(\mathbf{x}) - f(\mathbf{a})| = |\mathbf{c} \bullet \mathbf{x} - \mathbf{c} \bullet \mathbf{a}|$$

$$= |(c^{1}x^{1} + c^{2}x^{2} + \dots + c^{n}x^{n}) - (c^{1}a^{1} + c^{2}a^{2} + \dots + c^{n}a^{n})|$$

$$= |c^{1}(x^{1} - a^{1}) + c^{2}(x^{2} - a^{2}) + \dots + c^{n}(x^{n} - a^{n})|$$

$$\leq |c^{1}||x^{1} - a^{1}| + |c^{2}||x^{2} - a^{2}| + \dots + |c^{n}||x^{n} - a^{n}|$$
by the triangle inequality
$$< \delta \sum_{i=1}^{n} |c^{i}| = \sum_{i=1}^{n} |c^{i}| \left(\frac{\varepsilon}{\sum_{i=1}^{n} |c^{i}|}\right) = \varepsilon.$$

Hence we have verified the definition of f continuous at \mathbf{a} . Since \mathbf{a} was arbitrary, f is continuous on \mathbb{R}^n .

Alternative solution Let $\mathbf{a} \in \mathbb{R}^n$ be given. Let $\varepsilon > 0$ be given. Choose

 $\delta = \varepsilon / |\mathbf{c}| > 0$. Assume **x** satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. For such **x** consider

$$|f(\mathbf{x}) - f(\mathbf{a})| = |\mathbf{c} \bullet \mathbf{x} - \mathbf{c} \bullet \mathbf{a}|$$

$$= |\mathbf{c} \bullet (\mathbf{x} - \mathbf{a})| \quad \text{since the scalar product is distributive}$$

$$\leq |\mathbf{c}| |\mathbf{x} - \mathbf{a}| \quad \text{by Cauchy-Schwarz}$$

$$< |\mathbf{c}| \delta$$

$$= |\mathbf{c}| (\varepsilon/|\mathbf{c}|)$$

$$= \varepsilon$$

Hence we have verified the definition of f continuous at **a**. Since **a** was arbitrary, f is continuous on \mathbb{R}^n .

2 Prove, by verifying the ε - δ definition of continuity that the scalar-valued $f: \mathbb{R}^2 \to \mathbb{R}, (x,y)^T \mapsto xy$ is continuous on \mathbb{R}^2 .

Hint If $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ is given write $f(\mathbf{x}) - f(\mathbf{a}) = xy - ab$ in terms of x - a and y - b.

Solution The method is based on the identity

$$xy - ab = (x - a)(y - b) + a(y - b) + b(x - a).$$
 (1)

Let $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ be given. Let $\varepsilon > 0$ be given. Choose

$$\delta = \min\left(1, \frac{\varepsilon}{1 + |a| + |b|}\right) > 0.$$

Assume $\mathbf{x} = (x, y)^T$ satisfies $|\mathbf{x} - \mathbf{a}| < \delta$, in which case

$$|x - a| < \delta \text{ and } |y - b| < \delta.$$
 (2)

For such \mathbf{x} consider

$$|f(\mathbf{x}) - f(\mathbf{a})| = |xy - ab| = |(x - a)(y - b) + a(y - b) + b(x - a)|$$
by (1) above,
$$\leq |x - a||y - b| + |a||y - b| + b|x - a|$$
by the triangle inequality,
$$< \delta^2 + |a|\delta + |b|\delta,$$

by (2). We are also assuming that $\delta \leq 1$ in which case $\delta^2 \leq \delta$ and thus

$$\begin{split} |f(\mathbf{x}) - f(\mathbf{a})| &< \delta \left(1 + |a| + |b| \right) \\ &\leq \frac{\varepsilon}{1 + |a| + |b|} \left(1 + |a| + |b| \right) \\ &\text{since } \delta < \varepsilon / \left(1 + |a| + |b| \right) \\ &= \varepsilon. \end{split}$$

Hence we have verified the definition of f continuous at **a**. Since **a** was arbitrary, f is continuous on \mathbb{R}^2 .

Note You might try to use the identity

$$xy - ab = (x - a) y + a (y - b).$$

This would lead to

$$|f(\mathbf{x}) - f(\mathbf{a})| \le \delta |y| + \delta |a|$$
.

You could NOT choose $\delta = \varepsilon/(|y| + |a|)$, since δ cannot depend on the varying point $\mathbf{x} = (x, y)^T$. It can only depend on the fixed point $\mathbf{a} = (a, b)^T$.

Instead you should demand that $\delta \leq 1$ when $|y-b| < \delta \leq 1$ opens out to give |y| < 1 + |b|. Then

$$|f(\mathbf{x}) - f(\mathbf{a})| \le \delta |y| + \delta |a| \le \delta (1 + |b| + |a|),$$

and we choose the same δ as above.

3 Prove, by verifying the ε - δ definition that the vector-valued function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$,

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{c} 2x + y \\ x - 3y \end{array}\right)$$

is continuous on \mathbb{R}^2 .

Note For practice I have asked you to verify the definition, **not** to use any result that would allow you to look at each component separately.

Solution i. Let $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ be given. Let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon / \sqrt{17}$. Assume $\mathbf{x} = (x, y)^T$ satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. Then,

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})|^2 = \left| \left(\frac{2x + y}{x - 3y} \right) - \left(\frac{2a + b}{a - 3b} \right) \right|^2$$
$$= \left| \left(\frac{2(x - a) + (y - b)}{(x - a) - 3(y - b)} \right) \right|^2.$$

I have written this in terms of x - a and y - b since I know I can make them small. Continue, using the definition of |...| on \mathbb{R}^n ,

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})|^2 = (2(x-a) + (y-b))^2 + ((x-a) - 3(y-b))^2$$

$$= 4(x-a)^2 + 4(x-a)(y-b) + (y-b)^2$$

$$+ (x-a)^2 - 6(x-a)(y-b) + 9(y-b)^2$$

$$= 5(x-a)^2 - 2(x-a)(y-b) + 10(y-b)^2.$$

The negative sign on the middle term is a possible problem when applying upper bounds for |x - a| and |y - b|. We remove this by using the triangle inequality:

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})|^2 = |5(x-a)^2 - 2(x-a)(y-b) + 10(y-b)^2|$$

 $\leq 5(x-a)^2 + 2|x-a||y-b| + 10(y-b)^2,$

Yet $|\mathbf{x} - \mathbf{a}| < \delta$ means that both $|x - a| < \delta$ and $|y - b| < \delta$. Thus

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})|^2 \le 5\delta^2 + 2\delta^2 + 10\delta^2 = 17\delta^2.$$

Taking roots gives

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| \le \sqrt{17}\delta = \sqrt{17}\left(\frac{\varepsilon}{\sqrt{17}}\right) = \varepsilon.$$

Hence **f** is continuous at $\mathbf{a} \in \mathbb{R}^2$. Yet **a** was arbitrary so **f** is continuous on \mathbb{R}^2 .

Alternative Solution Recall that $|\mathbf{y}| \leq \sum_{i=1}^n y^i$ for $\mathbf{y} \in \mathbb{R}^n$ so $|\mathbf{g}(\mathbf{x})| \leq \sum_{i=1}^m |g^i(\mathbf{x})|$ for any $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^m$. With $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})$ we get

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| \le |2(x-a) + (y-b)| + |(x-a) - 3(y-b)|$$

 $\le 2|x-a| + |y-b| + |x-a| + 3|y-b|,$

by additional applications of the triangle inequality. Thus

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| \le 3|x - a| + 4|y - b|$$

and $\delta = \varepsilon/7$ will suffice.

4 Let $M_{m,n}(\mathbb{R})$ be the set of all $m \times n$ matrix of real numbers. Let $M \in M_{m,n}(\mathbb{R})$.

In the notes we showed that the function $\mathbf{x} \mapsto M\mathbf{x}$ is continuous on \mathbb{R}^n by showing that each component function is continuous on \mathbb{R}^n . In this question we show it is continuous by verifying the ε - δ definition.

i. Prove that there exists C > 0, depending on M, such that $|M\mathbf{x}| \leq C |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$.

Hint Write the matrix in row form as

$$M = \begin{pmatrix} \mathbf{r}^1 \\ \mathbf{r}^2 \\ \vdots \\ \mathbf{r}^m \end{pmatrix} \quad \text{when} \quad M\mathbf{x} = \begin{pmatrix} \mathbf{r}^1 \bullet \mathbf{x} \\ \mathbf{r}^2 \bullet \mathbf{x} \\ \vdots \\ \mathbf{r}^m \bullet \mathbf{x} \end{pmatrix}.$$

What is $|M\mathbf{x}|?$ Apply Cauchy-Schwarz to each $|\mathbf{r}^i\bullet\mathbf{x}|$.

ii. Deduce, by verifying the ε - δ definition, that the vector-valued function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto M\mathbf{x}$ is continuous on \mathbb{R}^n .

Solution i From the hint given and the definition of the norm we have

$$|M\mathbf{x}|^2 = \sum_{i=1}^m |\mathbf{r}^i \bullet \mathbf{x}|^2 \le \sum_{i=1}^m |\mathbf{r}^i|^2 |\mathbf{x}|^2,$$

by Cauchy-Schwarz. The result then follows with

$$C = \left(\sum_{i=1}^{m} |\mathbf{r}^{i}|^{2}\right)^{1/2} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{j}^{i})^{2}\right)^{1/2},$$

where a_j^i is the i, j-th element of M.

ii. Assume $M \neq 0$ since the result is immediate if M = 0. Let $\mathbf{f}(\mathbf{x}) = M\mathbf{x}$. Let $\mathbf{a} \in \mathbb{R}^n$ be given. Let $\varepsilon > 0$ be given, choose $\delta = \varepsilon/C$, with C as found in part a, and $C \neq 0$ since $M \neq 0$. Assume $0 < |\mathbf{x} - \mathbf{a}| < \delta$. Then

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| = |M\mathbf{x} - M\mathbf{a}| = |M(\mathbf{x} - \mathbf{a})|$$

since matrix multiplication is distributive
 $\leq C |\mathbf{x} - \mathbf{a}|$ by the definition of C
 $< C\delta = C(\varepsilon/C) = \varepsilon$.

Hence we have verified the definition that \mathbf{f} is continuous at $\mathbf{a} \in \mathbb{R}^n$. Yet \mathbf{a} was arbitrary so \mathbf{f} is continuous on \mathbb{R}^n .

5. Determine where each of the following maps $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous. For $\mathbf{x} = (x, y)^T \in \mathbb{R}^2$,

i.
$$f(\mathbf{x}) = \left\{ \begin{array}{ll} x+y & \text{if } y>0 \\ x-y-1 & \text{if } y\leq 0 \end{array} \right.$$

ii. $f(\mathbf{x}) = \left\{ \begin{array}{ll} x+y & \text{if } y>0 \\ x-y & \text{if } y\leq 0 \end{array} \right.$

Hint: Your arguments should split into three cases, y > 0, y < 0 and y = 0. You should make use of the fact that polynomials in x and y are continuous in open subsets of \mathbb{R}^2 .

Solution i. This function is continuous on the open set given by y > 0 (the upper half plane) since it is given by the polynomial x + y. It is also continuous on the open set given by y < 0 (the lower half plane) because it is given by the polynomial x + y - 1.

However, where the upper and lower half plane meet, i.e. the x-axis, f is **not** continuous. This is because, at a point $(x,0)^T$ on the x-axis we can look at the directional limit as we approach the point on a vertical straight line from above, i.e.

$$f\left(\begin{pmatrix} x \\ 0 \end{pmatrix} + t\mathbf{e}_2\right) = f\left(\begin{pmatrix} x \\ t \end{pmatrix}\right) = x + t \to x \text{ as } t \to 0 + .$$

Whereas, approaching the point from below on a vertical straight line, the directional limit is

$$f\left(\begin{pmatrix} x \\ 0 \end{pmatrix} + t\mathbf{e}_2\right) = f\left(\begin{pmatrix} x \\ t \end{pmatrix}\right) = x - t - 1 \to x - 1 \text{ as } t \to 0 - .$$

Different directional limits mean there is no limit at $(x,0)^T$ and so no continuity there.

ii. This function is continuous since it can be written $f((x,y)^T) = x + |y|$.

(Formally, this is continuous because it is the sum of two continuous functions: $(x,y)^T \mapsto x$ and $(x,y)^T \mapsto y$ are continuous by a result in the lecture notes (and also Question 1 on projections) and $y \mapsto |y|$ is continuous since $\lim_{y\to a} |y| = |a|$ for all $a \in \mathbb{R}$.)

Note This is rather a 'clever' solution of part ii. We could, instead, follow part i and say that this function is continuous on the open set given by y > 0 (the upper half plane) since it is given by the polynomial x + y. It is also continuous on the open set given by y < 0 (the lower half plane) because it is given by the polynomial x - y.

Again this leaves the x - axis, but this time we believe that f is continuous there. We show this by verifying the definition of limit. Let \mathbf{a} be an element of the x-axis, so $\mathbf{a} = (a,0)^T$. Note that $f(\mathbf{a}) = a$. Let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon/2$. Assume $|\mathbf{x} - \mathbf{a}| < \delta$. With $\mathbf{x} = (x,y)^T$ this implies $|x - a| < \delta$ and $|y - 0| < \delta$.

There are two cases, when y > 0 and then $y \le 0$.

In the first case, $|\mathbf{x} - \mathbf{a}| < \delta$ and y > 0 together give

$$|f(\mathbf{x}) - f(\mathbf{a})| = |(x+y) - a| = |(x-a) + y| \le |x-a| + |y| < 2\delta = \varepsilon,$$

having used the triangle inequality. Similarly in the second case, $|\mathbf{x} - \mathbf{a}| < \delta$ and y < 0 together give

$$|f(\mathbf{x}) - f(\mathbf{a})| = |(x - y) - a| = |(x - a) - y| \le |x - a| + |y| < 2\delta = \varepsilon.$$

In both cases $|f(\mathbf{x}) - f(\mathbf{a})| < \varepsilon$ and so we have verified the definition of continuity at \mathbf{a} . Yet \mathbf{a} was arbitrary so f is continuous on the x-axis.

6. Return to the function of Question 10 Sheet 1, $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(\mathbf{x}) = \frac{(x^2 - y)^2}{x^4 + y^2}$$
 for $\mathbf{x} = (x, y)^T \neq \mathbf{0}$ and $f(\mathbf{0}) = 1$.

- i. Show that f is continuous at the origin along any straight line through the origin.
- ii. Show that f is not continuous at the origin.

This is then an illustration of

$$\forall \mathbf{v}, \lim_{t \to 0} f(\mathbf{a} + t\mathbf{v}) = f(\mathbf{a}) \implies \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}).$$

Solution i. Continuous at the origin along any straight line through the origin means $\lim_{t\to 0} f(t\mathbf{v}) = f(\mathbf{0})$ for all vectors \mathbf{v} . Yet in Question 10i, Sheet 1, you were asked to show that $\lim_{t\to 0} f(t\mathbf{v}) = 1$ and, since $f(\mathbf{0}) = 1$ by the definition of f, we can deduce that f is continuous at the origin along any straight line through the origin.

ii. To be continuous at the origin we require $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x}) = f(\mathbf{0})$. Yet you were required to show in Question 10ii, Sheet 1, that $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x})$ does not exist. Hence it cannot be continuous at the origin.

Linear Functions.

7. **Linear functions** The definition of a linear function $\mathbf{L}: \mathbb{R}^n \to \mathbb{R}^m$ is that

$$L(u + v) = L(u) + L(v)$$
 and $L(\lambda u) = \lambda L(u)$,

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$.

- i. Given $\mathbf{a} \in \mathbb{R}^n$ prove that $L : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \mathbf{a} \bullet \mathbf{x}$ is a linear function. This was stated without proof in the lectures.
- ii. An example of Part i is, if $\mathbf{a} = (2, -5)^T \in \mathbb{R}^2$, then $f(\mathbf{x}) = \mathbf{a} \bullet \mathbf{x} = 2x 5y$ is a linear function on \mathbb{R}^2 . Show that
 - a. $f(\mathbf{x}) = 2x 5y + 2$ is not a linear function on \mathbb{R}^2 ,
 - b. $f(\mathbf{x}) = 2x 5y + 3xy$ is not a linear function on \mathbb{R}^2 .
- iii. Given $M \in M_{m,n}(\mathbb{R})$, an $m \times n$ matrix with real entries, prove that $\mathbf{L} : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto M\mathbf{x}$ is a linear function.

This was stated without proof in the lectures.

iv. Let $\mathbf{L}: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$\mathbf{L}\binom{x}{y} = \begin{pmatrix} 3x + 2y \\ x - y + 1 \\ 5x \end{pmatrix}.$$

Show that **L** is not a linear function.

Solution i. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have

$$L(\mathbf{u} + \mathbf{v}) = \mathbf{a} \bullet (\mathbf{u} + \mathbf{v}) = \mathbf{a} \bullet \mathbf{u} + \mathbf{a} \bullet \mathbf{v} = L(\mathbf{u}) + L(\mathbf{v})$$
$$L(\lambda \mathbf{u}) = \mathbf{a} \bullet (\lambda \mathbf{u}) = \lambda \mathbf{a} \bullet \mathbf{u} = \lambda L(\mathbf{u}).$$

Hence L is a linear function.

ii. a. For a counter-example note that

$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = -1$$
 and $f\left(\begin{pmatrix}2\\2\end{pmatrix}\right) = -4$.

Since

$$f\left(\binom{2}{2}\right) \neq 2f\left(\binom{1}{1}\right)$$

we conclude that f is not linear

b. For a counter-example note that

$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = 0$$
 and $f\left(\begin{pmatrix}2\\2\end{pmatrix}\right) = 6$.

iii. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have

$$\mathbf{L}(\mathbf{u}) + \mathbf{L}(\mathbf{v}) = M\mathbf{u} + M\mathbf{v} = M(\mathbf{u} + \mathbf{v}) = \mathbf{L}(\mathbf{u} + \mathbf{v})$$
$$\mathbf{L}(\lambda \mathbf{u}) = M(\lambda \mathbf{u}) = \lambda M\mathbf{u} = \lambda \mathbf{L}(\mathbf{u}).$$

Hence L is a linear function.

iv. For a counter-example note that

$$\mathbf{L}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \quad \text{and} \quad \mathbf{L}\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 10 \end{pmatrix}.$$

Thus

$$\mathbf{L}\left(2\binom{1}{0}\right) \neq 2\mathbf{L}\left(\binom{1}{0}\right).$$

Hence L is not a linear function.

8. If $\mathbf{L}: \mathbb{R}^n \to \mathbb{R}^m$ is a linear function prove that there exists C > 0, depending on \mathbf{L} , such that

$$|\mathbf{L}(\mathbf{x})| \le C|\mathbf{x}|\tag{3}$$

for all $\mathbf{x} \in \mathbb{R}^n$.

Deduce that **L** satisfies the ε - δ definition of continuous on \mathbb{R}^n .

Hint Apply a result from the lectures along with Question 4 above.

Solution In the notes it is shown that to each linear map is associated a matrix M so that $\mathbf{L}(\mathbf{x}) = M\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. The result (3), and the continuity of \mathbf{L} , then follows immediately from Question 4 above.

Alternative Solution Given $\mathbf{x} \in \mathbb{R}^n$ we can write $\mathbf{x} = \sum_{i=1}^n x^i \mathbf{e}_i$. Then L linear means that

$$\mathbf{L}(\mathbf{x}) = \sum_{i=1}^{n} x^{i} \mathbf{L}(\mathbf{e}_{i}).$$

By the triangle inequality,

$$|\mathbf{L}(\mathbf{x})| \le \sum_{i=1}^{n} |x^{i}| |\mathbf{L}(\mathbf{e}_{i})| \le \left(\sum_{i=1}^{n} |x^{i}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} |\mathbf{L}(\mathbf{e}_{i})|^{2}\right)^{1/2},$$

by Cauchy-Schwarz. This means the required result follows with $C = \left(\sum_{i=1}^{n} |\mathbf{L}(\mathbf{e}_i)|^2\right)^{1/2}$.

Solutions to Additional Questions 2

9. Verify the ε - δ definition of continuity and show that the scalar-valued $f: \mathbb{R}^2 \to \mathbb{R}, (x,y)^T \mapsto x^2y$ is continuous on \mathbb{R}^2 .

Hint Given $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ write $x^2y - a^2b$ in terms of x - a and y - b.

Solution Let $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ be given. Let

$$\sigma = \min\left(1, \varepsilon / \left(1 + 3\left|\mathbf{a}\right| + 3\left|\mathbf{a}\right|^{2}\right)\right).$$

Assume $\mathbf{x} \in \mathbb{R}^2$ satisfies $|\mathbf{x} - \mathbf{a}| < \delta$, so $|x - a| < \delta$ and $|y - b| < \delta$. We start by developing an identity.

$$x^{2}y - a^{2}b = (x - a)^{2} (y - b) + x^{2}b + 2xay - 2xab - a^{2}y$$

$$= (x - a)^{2} (y - b) + (x - a)^{2} b + 2xay - a^{2}y - a^{2}b$$

$$= (x - a)^{2} (y - b) + (x - a)^{2} b + 2 (x - a) a (y - b) + a^{2}y$$

$$+2xab - 3a^{2}b$$

$$= (x - a)^{2} (y - b) + b (x - a)^{2} + 2a (x - a) (y - b)$$

$$+a^{2} (y - b) + 2ab (x - a)$$

Thus, by the triangle inequality,

$$|x^{2}y - a^{2}b| \leq |x - a|^{2} |y - b| + |b| |x - a|^{2} + 2 |a| |x - a| |y - b| + |a|^{2} |y - b| + 2 |ab| |x - a|$$

$$< \delta^{3} + |b| \delta + 2 |a| \delta^{2} + |a|^{2} \delta + 2 |a| |b| \delta$$

$$< \delta (1 + 3 |\mathbf{a}| + 3 |\mathbf{a}|^{2}),$$

having used $\delta \leq 1$ and $|a|, |b| \leq |\mathbf{a}|$. Then by our choice of δ

$$|x^{2}y - a^{2}b| < \frac{\varepsilon}{1 + 3|\mathbf{a}| + 3|\mathbf{a}|^{2}} (1 + 3|\mathbf{a}| + 3|\mathbf{a}|^{2}) = \varepsilon.$$

And so we have verified the definition of $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$. Hence f is continuous at \mathbf{a} . Yet \mathbf{a} was arbitrary, so f is continuous on \mathbb{R}^2 .

There is no great virtue in this question other than showing how time consuming it is to verify the definition, even with quite simple functions.

10. Let $1 \le i \le n$ and define $\rho^i : \mathbb{R}^n \to \mathbb{R}^{n-1}$ by omitting the *i*-th coordinate, so

$$\rho^{i}((x^{1},...,x^{n})^{T}) = (x^{1},...,x^{i-1},x^{i+1},...,x^{n})^{T}.$$

i. Verify the ε - δ definition of continuity and show that ρ^i is continuous on \mathbb{R}^n .

ii. For each $1 \leq i \leq n$ find $M_i \in M_{n-1,n}(\mathbb{R})$ such that $\rho^i(\mathbf{x}) = M_i \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. (Thus continuity follows from Question 4. We could, though, note that ρ^i is linear in which case continuity follows from Question 8.)

Solution i. Let $1 \le i \le n$, $\mathbf{a} \in \mathbb{R}^n$ and $\varepsilon > 0$ be given. Choose $\delta = \varepsilon$ and assume \mathbf{x} satisfies $|\mathbf{x} - \mathbf{a}| < \delta$. Then for such \mathbf{x}

$$\begin{aligned} \left| \rho^{i}(\mathbf{x}) - \rho^{i}(\mathbf{a}) \right|^{2} &= \left| \left(x^{1} - a^{1}, \dots, x^{i-1} - a^{i-1}, x^{i+1} - a^{i+1}, \dots, x^{n} - a^{n} \right)^{T} \right|^{2} \\ &= \sum_{j=1, j \neq i}^{n} \left| x^{j} - a^{j} \right|^{2} \leq \sum_{j=1}^{n} \left| x^{j} - a^{j} \right|^{2} \\ &= \left| \mathbf{x} - \mathbf{a} \right|^{2}. \end{aligned}$$

Thus

$$|\rho^i(\mathbf{x}) - \rho^i(\mathbf{a})| \le |\mathbf{x} - \mathbf{a}| < \delta = \varepsilon,$$

and we have verified the definition of $\lim_{\mathbf{x}\to\mathbf{a}} \rho^i(\mathbf{x}) = \rho^i(\mathbf{a})$. Hence ρ^i is continuous at \mathbf{a} . Yet i and \mathbf{a} were arbitrary, so ρ^i is continuous on \mathbb{R}^2 for all i.

ii.

$$M_i = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & 0 & 0 & 0 & \cdots \\ & & 1 & 0 & 0 & 1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix},$$

with 1's on the two half diagonals, 0's elsewhere, and 0's in the *i*-th column. The continuity of ρ^i would then also follows from Question 4.